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_______________________________________________________________________________ 

Abstract  

The rapid development of numerical solution methods for non-linear differential equations and advances in computers 

during recent years have gradually enabled predictions of flow and temperature fields as well as associated heat fluxes 

and stresses in engineering applications. However, turbulence modeling still presents a problem as accurate reliable 

predictions of flow separation; reattaching, impinging and recirculating flow regions are required. In addition, 

experimental investigations are needed to verify the computations.  

In several circumstances numerical investigations might be useful supplements to experimental testing methods, e.g., in 

providing details of local phenomena and fundamental mechanisms. For heat exchangers for both laminar and turbulent 

flows are of important and in addition the geometry is commonly more or less complex and sometimes of small 

dimensions. This paper considers current CFD methods including turbulence modeling, associated problems and 

limitations as well as providing examples of applications of CFD in a variety of heat exchanger problems.  Narrow ducts 

of complex geometries will be of main concern. These will include wavy ducts, cross-corrugated surfaces, finned 

surfaces, and ducts with bumps.     Copyright © AJESTR, all rights reserved.     
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1. Introduction  
 

Heat exchangers are device which commonly are used to transfer heat between two or more fluids. Many types of 

heat exchangers exist and have been developed and used in heat and power plants, refrigeration units, air-

conditioning units, process industries, gas turbines systems, automotive applications, electronics cooling etc., [1].  

In most heat exchangers, the heat transfer is due to convection and conduction from a hot to a cold fluid which are 

separated by solid walls. Design and sizing of heat exchangers involve many complex procedures. The total amount 

of heat transferred, pressure drops, performance efficiency, manufacturing and operating costs are important in the 

final design. In some cases the overall cost is important while in other applications weight and size are the most vital 

factors. Moreover, as a heat exchanger is designed the convective heat transfer coefficients between fluids and walls 

are important. Commonly the hot and cold fluids are flowing in channels of various designs. Thus internal channel 

flow is very important in the field of heat exchangers. These heat transfer coefficients are dependent on the flow 

velocity, fluid properties, channel cross section geometry and size, and duct length- coefficients are available [2, 3], 

for single phase flow at laminar, turbulent or transitional conditions. In developments of compact heat exchangers, it 

is important to decrease the heat transfer surface area. However, if still the same of higher amount of heat flow rate 

prevails, the only way out is to improve the heat transfer coefficients and thus reduces the thermal resistances on the 

hot and cold sides. Thus the concept of enhanced heat transfer [4] is very relevant for research and development of 

efficient heat exchangers. New surface and surface modifications like cross corrugated surface, dimples, ribbed 

surfaces, offset strip fins, louvered surfaces, inserts, wavy ducts, ducts with bumps etc. are being developed 

extensively.   

There are several reasons why heat transfer and heat exchangers play a key role in the reduction of greenhouse gas 

emissions and for achieving a sustainable development [5, 6]. In new advanced techniques to reduce energy 

consumption and improving power conversion efficiencies, introduction of fuel cells, usage of renewable energy 

sources, application of exhaust gas recirculation and cooling etc. all call for heat transfer analysis and introduction of 

heat exchangers. Attempts to provide efficient, compact and cheap heat exchangers are indeed challenging.  To 

achieve these both theoretical and experimental investigations must be conducted and advanced and advanced 

modern methods must be adopted. The present paper focus on modeling approaches and how such ones can be used 

in the research and development of heat exchangers.  The paper briefly reviews current CFD methods for single 

phase flows including turbulent modeling, associated problems and limitations as well as providing examples of 

CFD applications in a variety of heat exchangers problems. Narrow ducts of complex geometries will be of main 

concern. Wavy ducts, cross-corrugated surfaces extended surfaces fins; ducts with bumps etc. will be included.  

Results from commercially available computer codes and in-house codes are presented.  

 

2. Governing Equations   

          

All the governing differential equations of mass conversation, momentum, energy and mass fraction of species can 

be cast into a general partial differential equation as  
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Where   represents the an arbitrary dependent variable - the velocity components, temperature etc., and    indicates 

the generalized diffusion coefficient, and S is the source term for  . The general differential equation consists of 

four terms. From left to the right in Eq. (1), they are called unsteady term, the convection term, the diffusion term 

and the source term.   

 

3. Modeling of Turbulent Flows  

In heat transfer equipment like heat exchangers both laminar and turbulent flows are of interest. While laminar 

convective flow and heat transfer can be simulated by Eq. (1) ( or transformed variants for arbitrary geometries), 

turbulent flow and heat transfer normally require modeling approaches in addition to Eq. (1) and this section gives a 

brief introduction to the modeling of turbulent flows.    

The instantaneous mass conservation, momentum and energy equations form a closed set of five unknowns u, v, w, 

p and T. However, the computing requirements in terms of resolution in space and time for direct solution of the 

time dependent equations of fully turbulent flows at high Reynolds number (so called DNS calculations) are 

enormous and major developments in computer hardware and needed. Thus DNS is more viewed as a research tool 

for relatively simple flows at moderate Reynolds number.  Meanwhile practicing thermal engineers need 

computational procedures supplying information about the turbulent processes, but avoiding the need to predict 

effects of every eddy in the flow.  

This calls for information about the time-averaged properties of the flow and temperature fields (e.g., mean 

velocities, mean stresses, mean temperatures etc.). Commonly a time-averaging operation called Reynolds 

decomposition is carried out. Every variable is then written as a sum of time-averaged value and a superimposed 

fluctuating value. In the governing equations additional unknown appears, six for the momentum equations and 

three for the temperature field equation. The general variable is written as 

  =  
+ 

 +  
' 
                                       ( )     

The additional terms in the differential equations have the forms  

-  u

i u


j
 
 and    cp u


i T       ( ) 

and are called turbulent stresses and turbulent heat fluxes, respectively. Now, the task of turbulence modeling is to 

provide procedures to predict the additional unknowns, i.e., the turbulent stresses and turbulent heat fluxes with 

sufficient generality and accuracy. Methods based on the Reynolds averaged equations are commonly termed as 

RANS (Reynolds averaged Navier-Stokes equations) method.  

 

4. Types of Models     

The most common turbulence models for industrial applications are classified as  
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(a) zero-equation models 

(b) one-equation models 

(c) two-equation models 

(d) Reynolds-equation models 

(e) algebraic-equation models 

(f) large-eddy simulation  

The three first models in this list account for the turbulent stresses and heat fluxes by introducing a turbulent 

viscosity (eddy viscosity) and a turbulent diffusivity (eddy diffusivity). Linear and non-linear models exists, the 

eddy viscosity is usually obtained from certain parameters representing the fluctuating motion. On the other hand, in 

two equation models, these parameters are determined by solving two additional differential equations. Models 

using the eddy viscosity and eddy diffusivity approach are isotropic 

In nature and cannot evaluate non-isotropic effects. Various modifications and alternate modeling concepts have 

been proposed and examples of this category are the k- ,and k-  

Models in high or low Reynolds number versions as well as in linear and non-linear versions.  

In Reynolds stress equation models (RSM) differential equations for the turbulent stresses (Reynolds stresses) are 

solved and directional effects are naturally accounted for. Six modeled equations (i.e  not exact equations)  for the 

turbulent stress transport are solved together with a model equation for the turbulent scalar dissipation rate .  RSM 

models are quite complex and require large computing efforts and for this reason are not widely used for industrial 

flow and heat transfer applications. Algebraic stress models (ASM) and explicit such (EASM) present an economic 

way to account for the anisotropy of the turbulent stresses without solving the Reynolds stress transport equations. 

One idea is that the convective and diffusive terms are modeled or even neglected and then the Reynolds stress 

equations reduce to a set of algebraic equations.   

The LES is model where the time-dependent flow equations are solved for the mean flow and largest eddies while 

the effects of the smaller eddies are modeled. The LES model has been expected to emerge as the future model for 

industrial applications but it still limited to relatively low Reynolds number and simple geometries. Handling wall-

bounded flows with focus on the near wall phenomena like heat and mass transfer and shear at high Reynolds 

present a problem due to the near-wall resolution requirements. Complex wall topologies also present problem for 

LES. Nowadays, approaches to combine LES and RANS based methods have been suggested. 

 

4.1 Wall Effects              

But there are two standard procedures to account for wall effects in numerical calculations of turbulent flow and 

heat transfer. One is to employ low Reynolds number modeling procedures, and the other is to apply to wall function 

method. In general wall the wall function approach is efficient and requires less CPU time and memory size but it 

becomes inaccurate at low Reynolds numbers, [9].      

 

5. Numerical Methods for Solution of Partial Differential Equations 

In addition, some methods established for numerical solution of the governing equations of fluid flow and heat 

transfer problems. These are, finite volume method (FVM), the finite element method (FEM), the finite volume 
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method (FVM), the finite difference method (FDM), the control volume finite element method (CVFEM) and the 

boundary element method (BEM)and the finite volume method will be considered more extensively.  The Finite 

Difference method is the oldest method and is also easiest method to apply for problems with simple geometries. 

The computational domain is covered by a grid. Taylor series expansion or polynomial fitting is used to approximate 

the derivatives of the variables with respect to coordinates at each grid point [10].    

 

5.1 Finite Volume Method   

In this FVM to domain is subdivided into a number of so-called control volumes. The integral form of the 

conservation equations are applied to each control volume. At the center of the control volume a node point is 

placed. At this node the variables are  located. The values of the variable at the faces of the control volumes are 

determined by interpolation. The evaluation of the surface and volume integrals are carried out by quadrature 

formulas. Algebraic equations are obtained for each control volume. In these equations values of the variables for 

neighbouring control volumes appear. The Finite volume method is a very suitable for complex geometries and the 

method is conservative as long as surface integrals are the same for control volumes sharing boundary. In addition 

the FVM is a popular method particularly for convective flow and heat transfer. It is also applied in several 

commercial CFD-codes [11-12]. The Finite Element Method has a good ability to handle complex geometries, 

Fletcher [13] and Reddy and Gartling [14].    

 

5.2 Control Volume Finite Volume method and Boundary Element method  

The control volume finite element method is a hybrid method between the FEM and FVM methods. In a two-

dimensional case the domain is divided into triangular elements. The nodes are located at the vertices. Any variable 

is assumed to vary linearly within the element. The control volumes are formed around the nodes by joining the 

centroids of the elements and mid points on element edges. The conservation equations in integral form are applied 

to the control volumes as outlined for the FVM, Masson et al., [15]. Moreover, the boundary element method 

(BEM) basically transforms the governing equations to boundary integrals which are to be solved numerically.  For 

heat conduction problems it is well suited but becomes more complicated for convective flow and heat transfer, 

Power et al., [16].  

 

6. Commercial Computer Codes    

Several industries and companies worldwide are nowadays using commercially available so-called CFD-codes 

(CFD-computational fluid dynamics) for simulation of flow and heat transfer, topics in heat exchangers, 

investigations on enhanced heat transfer, electronics cooling, gas turbine heat transfer etc. Among these codes – 

FLUENT, CFX, STAT-CD, FIDAP, ADINA, CFD2000, PHOENICS and others.  However, to successfully apply 

such codes and to understand the fundamental concepts of computational methods.   

 

7. Illustration of the Finite Volume method for a two dimensional case   
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Considering the general Eq.(1) in two dimensions. With a Cartesian coordinate system a rectangular grid is shown in 

Fig. (1). The grid points are denoted by upper case letters while the control volume faces appear with lower cases 

letters.  Eq.(1) integrated over the control volume. By applying the mass conservation equation(             

 ), the discretitized form of Eq.(1) becomes  

aP P = aE E + aw w+ aN N + aS S + b                    (4)  

the coefficients aP,……………….,. aN   depend on the chosen difference scheme to handle the convection-diffusion 

terms. In general we may write  

aE = DeA(|  |) + max (-Fe, 0) (5)  

aW = DwA(|  |) + max (Fw, 0) (6)  

aN = DnA(|  |) + max (-Fn, 0) (7)  

aS = DsA(|  |) + max (Fs, 0) (8)  

and  

aP = aE + aW + aN  + aS +    
 -   x y (9) 

    
    

 x y/τ (10) 

     x y +   
    

                                                                          (11)  

The D:s, F:s and P:s in Eqs. (5) - (8) are  

  =   
  

   
,   Dw =   

  

   
,      Dn =   

  

   
,    

DS =    
  

   
    

Pe= 
  

  
    = 

  

  
, Pn= 

  

  
, Ps= 

  

  
  

Fe= (  )         (  )        (  )        (  )    

 

The function  (| |) has different forms depending on the selected difference scheme. Table 1 presents some 

examples:  

Table 1: The function   (| |)    

 

 (| |) Difference scheme 

1-0.5 (| |) CDS-central difference 

scheme 

1 UDS-upstream scheme 

Max (0, 1-0.5 (| |)) Hybrid scheme 

Max (0, 1-0.1| | ) Power law scheme 

 

If higher- order accurate scheme like QUICK, van   Leer etc., are used more complicated formula then Eqs. (8)-(14) 

appear, i.e., additional grid points show up and the expressions for the coefficients change accordingly.   

  

7.1 Source Term   

The source term S may be depend on the variable   and in the discretized equation it is desirable to account for such 

dependence. Commonly the source term is expressed as a linear function of   . At the grid point P, S is then written 

as  

                                                                                      (12) 

The linearization procedure above was used as the coefficients in Eq.(7)  has been discussed.  

 

7.2 Solution of the discretized equations   

 - values at the grid point as unknown and for 

- values, the boundaries values can be eliminated by using given or fixed conditions 
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of the fluxes as such boundaries. Gauss elimination is a so called direct method to solve algebraic equations. For 

one-dimensional cases the coefficients form a tridiagonal matrix and an efficient algorithm called the Thomas 

algorithm or tridiagonal matrix algorithm (TDMA) is achieved. A popular method is a line-by-line technique 

combined with a block correction procedure. The equation along the chosen line are solved by the TDMA. Iterative 

methods are also needed because equations are non-linear and sometimes interlinked. In many situations, e.g., 

ation to another is so high that convergence 

in the iterative process is not achieved. To circumvent this and to reduce the magnitude of the changes, 

underrealxation factors (between 0 and 1) are introduced.   

 

7.3 The pressure in the momentum equations and solution procedures of the 

momentum equations             

 

In the momentum equations, a pressure gradient term appears in each coordinate direction (i.e., a source term S). If 

these gradients are known, the discretized equations for the flow velocities would follow the same procedure as for 

any scalar. However, in general the pressure gradients are not known but have to be found as part of the solution. 

Thus the pressure and velocity fields are coupled and the continuity equation (mass conservation equation) has to be 

used to develop a strategy.  On the other hand, a special interpolation scheme has been used to calculate the 

velocities at the control volume faces. Most commonly the so-called  Rhie-Chow  interpolation methods is applied 

[17]. 

We have mentioned earlier that the velocity and pressure fields are coupled; thus a strategy has to be developed in 

the solution procedure of the momentum equations. The oldest algorithm is the SIMPLE (semi-implicit-method-

pressure-linked-equations) algorithm. A pressure field   p  is guessed and then the momentum equations are solved 

for this pressure field resulting in a velocity field    
  . The pressure correction   can be obtained. The velocity 

correction are related to the pressure corrections by  

 

    =         

                                                                                                              (13) 

                                                           orrected according to   

p=                                                                                                                      (14) 

     =   
  +   


                                                                                                                (15)        

The the momentum equations are solved again but now with the corrected pressure (16) as the guessed pressure. 

Inaddition, new velocities are obtained and new pressure and velocity corrections are calculated. The whole process 

is repeated until convergence is obtained. On the other hand, there are other similar algorithms available today. 

SIMPLEC (SIMPLE-consistent) and SIMPLEX (SIMPLE-extended) are common. They differ from SIMPLE 

mainly in the expression for di in Eq. (15), Anderson et al. [18].  

Another algorithm is PISO (pressure implicit splitting operators) [19], has become popular and originally it is 

pressure-velocity coupling strategy for unsteady compressible flow. Compared to SIMPLE it involves one predictor 

step and two corrector steps. But, another algorithm is SIMPLER (SIMPLE-revised). Here the continuity equation is 

used to derive a discretized equation for the pressure. The pressure correction is then only used to update the 

velocities through the velocity corrections.   

 

7.4     Convergence   

The solution procedure is in general iterative and then some criterion must be used to decide when a converged 

solution has been reached. One method is to calculate residuals R as  

    ∑                                                                                          (16)  

for all variables; NB indicates neighbouring grid points e.g., E, W, N, S. If the solution is converged, R = 0 

everywhere. Practically, it is often stated that the largest value of the residuals [R] should be less than a certain 

number. If this is achieved the solution is said to be converged.    
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7.5 Number of grid points and control volumes                           

The widths of the control volumes do not need to be constant nor do the successive grid points have to be equally 

spaced. Furthermore, it is desirable to have uniform grid spacing. Also it is required that a fine grid is employed 

where steep gradients appear while coarser grid spacing may suffice where slow variations occur. The various 

turbulence models require certain conditions on the grid structures close to solid walls. The so-called high and low 

Reynolds number versions of these models demand different conditions.  On the other hand, it is recommended that 

the solution procedure is carried out on several grids with different fineness and varying degrees of non-uniformity. 

It might be possible to estimate the accuracy of the numerical solution procedure.  

 

8. Complex Geometries      

CFD-methods based on Cartesian or cylindrical coordinate systems have limitations in complex or irregular 

geometries. Applying Cartesian and/ or cylindrical coordinates means that the boundary surfaces are treated in a 

stepwise manner.  To overcome these problems methods based on body –fitted or nonorthogonal grid systems are 

needed. Such grid systems may be unstructured, structured or block-structured. Because the grid lines follow the 

boundaries, boundary conditions can more easily be implemented. On the other hand, there are also some 

disadvanges with non-orthogal grids. The transformed equations contain more terms and the grid-nonorthogonality 

may cause unphysical solutions. In other words, the arrangements of the varaiables on the gtid affect the efficiency 

and accuracy of the solution algorithm.  

Grid generation is an important issue and today most commercial CFD-packages have their own grid generators but 

also several grid generation packages, compatible with some CFD-codes, are available. The interaction with various 

CAD (computer-added design) –packages also an important issue today treating complex geometries [20, 21].    

 

9. Results and Discussion  

In this study some results from CFD analysis of heat transfer and fluid flow in various heat exchanger applications 

have been studied.   

 

            10.   Cross-corrugates surfaces   

Plate-and-frame heat exchangers (PHE) are in used in many different processes in a broad range of temperatures 

with a variety of substances. In addition various types of PHEs exist. They are all assembled of plates with an 

embossed surface area enhancement pattern. Today, the most common pattern in use is the chevron or herringbone 

design.  The embossed pattern results in a larger heat transfer surface than a flat plate, improves the plate stiffness 

and assures the channel gap. The geometry of corrugation is very important for thermal-hydraulic performance of 

the heat exchanger. Each plate has four corner ports which, in pairs, establish access to the narrow flow passages on 

their side of the plate. Usually there are also distribution areas between the ports and embossed plate area. Fig. (2) 

shows a plate with a chevron pattern. Plates are usually staked together in a symmetric or mixed arrangement as 

indicated in Fig. (3).   The heat transfer enhancement in PHE:s is related to the plate characteristics  and may be 

attributed to increased effective heat transfer area, small hydraulic increase effective heat transfer area, small 

hydraulic diameter flow channels and vortex or swirl flow generation. The inclination angle, corrugation amplitude, 

corrugation wavelength and the profile of the waviness are important for the local and overall heat transfer 

coefficients as well as pressure loses.  The geometry investigated is consistent with typical commercially available 

plate heat exchangers.  Fig. (4) shows a segment of the geometry of the corrugated plates. In the numerical solution 

approach, the smallest volume, for which periodic conditions can be realized, is attempted. The whole plate areas 
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will consists of many such cells. Fig.(5) the most important dimensions are indicated, the pitch p, height b, angle 2  

and plate thickness t.  Again, Fig. (6) shows a side view of the unit cell, which can be considered as the plane of 

geometrical symmetry.    

 

The specific geometric considered has the dimensions: b = 3.05.10-3 m, p = 1.07.10-2 and R = 2.3.10-3 m. For this 

ol volumes were used in each block. But, in Reynolds number range was 900-20000. For 

this geometry experimental results were available for the average Nusselt number and the friction factor. These 

results, investigated by Alfa Laval AB, Lund were deduced from overall performance tests. The chosen number of 

the grids points was found appropriate as a balance between computational times and sufficient numerical accuracy 

was attempted for. The RNG k-ε   model was applied. Water with Prandtl number 4.33 was the fluid. Fig.(7) shows 

the flow pattern, at mid plane parallel with the lower furrow axis, for the geometry. From the above observations it 

is noticed that the experimental values for the unit cell were achieved from overall data from which the inlet and 

outlet regions and the flow distribution areas were subtracted. Moreover, a certain additional degree of uncertainty is 

thus present in the experimental values presented in Fig. (8). Nevertheless, the computed results are promising and 

encouraging, [22, 23].     
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Nomenclature  

 a coefficient  [kg/ms] 

A function  [-] 

b coefficient  

cp specific heat  [J/kgK] 

D diffusion coefficient [kg/ms]  

F mass flow rate  [kg/ms] 

k turbulent kinetic energy [m
2
/s]  

P Peclet number      …. 

p pressure  [Pa]  

       pressure fluctuation       [Pa]  

      Residual                       …. 

       Source term                 ….  

SC   constant part of S …..  

SP   linear coefficient of S …..  

     temperature fluctuation [K]  

      time      [sec]  

     velocity in x-direction [m]  

v    velocity in y-direction    [m]  

     velocity vector                [m/s]  

        Cartesian coordinates    [m]  

Greek symbols 

∆x  step-size x direction      [m]  

∆y  step-size y direction      [m]  
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∆  step-size in time       [s]  

     dissipation rate   [ m
2
/s

3
]  

       arbitrary variable           …….  


’
    fluctuating value of     ……..  

     diffusion coefficient  [m
2
/s] 

     density                            [kg/m
3
] 

Subscripts   

E, W, N, S  east, west, north, south grid point respectively  

e, w, n, s           east, west, north, south face respectively 
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